MENU
  • トップページ
  • サイトマップ
  • 会社概要
  • プライバシーポリシー
  • お問い合わせ
数学家庭教師は(有)峰企画
  • トップページ
  • サイトマップ
  • 会社概要
  • プライバシーポリシー
  • お問い合わせ
数学家庭教師は(有)峰企画
  • トップページ
  • サイトマップ
  • 会社概要
  • プライバシーポリシー
  • お問い合わせ
  1. ホーム
  2. 印西・白井|塾で伸び悩んだらご相談下さい
  3. ブログアーカイブ

ブログアーカイブ

  • 京大

    素数でアハ体験 – 2016年京大 数学 第2問

     2016年京大 数学 第2問 は、指定された条件の整数が素数であることの証明です。問題文は以下の通りです。 素数 を用いて と表される素数をすべて求めよ.  素数のべき乗の和が素数になるとか、なんかゴールドバッハ予想みたいな主張です。そんなの簡単に...
    2021年7月2日
  • 京大

    整数値有理式の問題 – 2015年京大 数学 第5問

    2015年京大 数学 第5問 は有理式(多項式分の多項式、の形の式)に関する問題です。問題文は以下の通りです。 を正の実数として整式を考える。すべての正の整数 に対して は整数であるとする。このとき、 は で割り切れることを示せ。  表題のような整数...
    2021年7月1日
  • 東大

    フィボナッチがこんなところまで! – 1998年東大 数学 前期 第3問

    1998年東大 数学 前期 第3問は、平面図形と数列の問題です。これは解法の先取りというか、ネタバレですが、解いていくうちにフィボナッチ数列が、思いがけず現れてきます。  問題文は以下の通りです。   平面に2つの円 をとり、 を 軸と 、 に接する円と...
    2021年6月29日
  • 東大

    ネイピア数の定義を再確認する – 2016年東大 数学 第1問

     2016年東大 数学 第1問 は、いわゆる「ネイピア数」に関する問題です。  ネイピア数とは自然対数の底のことですが、学校ではこの名称で習わなかったため、今一つなじみがありません。ティッシュペーパー?、とか、西洋剣のレイピア?、とか、ボケをかま...
    2021年6月24日
  • 東大

    逆関数の積分 – 2006年東大 数学 第6問

     今回取り上げる、 2006年東大 数学 第6問 は、逆関数の積分に関する問題です。逆関数の積分などと突然言われるとギョッとしますが、慌てなくて大丈夫です。  問題文は以下の通りです。   を定義域とする関数 について、以下の問いに答えよ。(1) 関数 ...
    2021年6月21日
  • 東工大

    空間分割の無理ゲー問題 – 2019年東工大 数学 第4問

     今回取り上げる 2019年東工大 数学 第4問 は、解き方がちょっと見当もつきません。こりゃ無理ゲーってレベルじゃねえぞ的な超難問です。  問題文は結構長いので、引用は断念しました。ググると問題文を見つけることが出来ますので、そちらをご覧くださ...
    2021年6月17日
  • 東大

    八面体 Strikes Back – 2019年東大 数学 第3問

    2019年東大 数学 第3問 は、八面体に関する問題です。前回の出題から11年、何度も姿を現すその様は、ティアマト彗星のようです(遭遇周期は必ずしも一定ではありませんが)。 問題文は以下の通りです。  座標空間内に5点 、 、 、 、 を考える。線分 の中...
    2021年6月10日
  • 東大

    複素平面上のフィボナッチ数列 – 2001年東大 数学 第4問

     2001年東大 数学 第4問 は複素平面上の数列問題です。この分野は入試ではポピュラーなので、本番に備えて十分な準備をしておきたいものです。  本問の大きな特徴は、あのフィボナッチ数列 を複素数に適用しているところです。どんな興味深い結果が得ら...
    2021年6月8日
  • 東大

    3次関数とガウス記号 – 1998年東大 数学 第4問

     1998年東大 数学 第4問 は、後期試験にあの伝説の超難問が出題された年の問題で、3次関数にガウス記号を組み合わせるという、食い合わせの悪さが特徴の難問です。  問題文は以下の通りです。  実数 に対して をみたす整数 を であらわす。 を整数とし...
    2021年6月4日
  • 京大

    n進法表記とべき乗の問題 – 2016年京大 文系 数学 第3問

     今回取り上げるのは、 2016年京大 文系 数学 第3問 。 進法表記に関する問題です。問題文は以下の通りです。 を4以上の自然数とする。数 2、12、1331が全て 進法で表記されているとして、 が成り立っている。このとき はいくつか。十進法で答えよ。...
    2021年6月1日
1...13141516
家庭教師ブログ
数学ブログ
目次
家庭教師ブログ
数学ブログ
家庭教師無料体験お申込み
お電話:047-499-0997
お電話
無料でご相談

© 数学家庭教師は(有)峰企画.